N9g0-27301

A Development Framework for Artificial Intelligence
Based Distributed Operations Support Systems

Richard M. Adler and Bruce H. Cottman

Symbiotics, Incorporated
875 Main Street
Cambridge, Ma 02139
(617) 876-3633

Abstract

Advanced automation is required to reduce costly human operations support requirements for complex
space-based and ground control systems. Existing knowledge-based technologies have been used successfully
to automate individual operations tasks. Considerably less progress has been made in integrating and
coordinating multiple operations applications for unified intelligent support systems. To fill this gap, we are
constructing SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems. SOCIAL
consists of three primary language -based components defining: models of interprocess communication across
heterogeneous platforms: models for interprocess coordination, concurrency control, and fault management:
and for accessing heterogeneous information resources. DAI application subsystems, either new or existing,
will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL
will reduce the complexity of distributed communications, control, and integration, enabling developers to
concentrate on the design and functionality of the target DAI system itself.

Introduction

Operational support of complex space-related systems currently entails expensive manpower require-
ments. Human labor costs are particularly high i manned space systems such as the Space Shuttle and the
planned Space Station: in these remote settings, scarce manpower that is dedicated to operational support
cannot be allocated to primary inission objectives. The economic viability of increasingly advanced space
systems hinges on significant increases in operational support automation [Ba88].

Standard engineering formalisms such as control theory and operations research can be used to auto-
mate simple control, monitoring, and scheduling tasks. However, such methods do not generalize readily
to non -routine contexts: assessing and responding to system failures; revising plans in the face of unfore-
seen conditions: and similarly difficult cognitive tasks. Over the last several decades, artificial intelligence
(A1) researchers have addressed these problems by developing symbolic modeling and automated reason-
ing techniques. These methods offer superior flexibility and generality for modeling human analytic and
decision- making processes and for solving combinatorially complex problems.

Expert systems, model-based reasoning, and other knowledge-based tools and methods have been
applied to automate tasks including fault detection and diagnosis, planning and scheduling, data analysis,
and information storage and retrieval. Several important prototypes systems developed in recent years are
being extended and validated in field tests, in preparation for integration into existing operational support
systems for complex networks [Ad89b,]3r89,BaSS,MuSQ,RuSEﬂ.

[ntegrating and coordinating multiple knowledge-based applications related to a common domain are
critical problems that have received little attention until recently [Ad89a]. Existing intelligent applications
for operations support rely on system-specific interfaces to users, data feeds, databases, and conventional
automation software. These “standalone” systems also lack access and control facilities for working together
cooperatively on clearly related operations tasks, such as intelligent diagnosis and error-tracking. As increas-
ing numbers of intelligent support tools are deployed together in common domains, the need for effective
tools for integrating such systems into a unified cooperative framework will become critical.

This paper describes SOCIAL, a development framework for distributed systems that is intended to
fill the technology gap. SOCIAL consists of three primary language-based tools: MetaCourier supplies
functionality for interprocess communication and control access across heterogeneous platforms; MetaAgents
defines control models for interprocess organization, data replication, concurrency management, and fault

231

detection and recovery; MetaViews defines a uniform data model for accessing and controlling persistent
information stores such as data and knowledge bases. New and existing application elements access these
distributed services non-intrusively, via high-level message-based protocols. SOCIAL thereby reduces the
complexity of distributed communications, control, and integration. enabling developers to concentrate on
the design and functionality of the target system itself.

The next two sections of the paper define the central system integration issues that SOCIAL addresses
and review related research. Next, SOCIAL’s architecture and user model are described and illustrated with
a hypothetical operations support example. The remaining sections outline the design and functionality of
SOCIAL's primary language-based subsystems.

Integrating and Coordinating Heterogeneous Intelligent Systems

Several basic problems arise in integrating and coordinating multiple knowledge-based systems related
to a common domain. First, different activities within a domain such as operational support generally depend
on different kinds of knowledge, skills, tools, and methodologies. Knowledge-based automated assistants tend
to require correspondingly diverse representation, reasoning, and internal control models. Integrating such
applications thus requires methods for reconciling or accommodating heterogeneous internal architectures.

Second, different tasks within a given domain, while distinctive in many respects, frequently display
important commonalities. For example, network operators and managers share background information
and expertise concerning configuration procedures, although their respective depth and application of such
knowledge may differ. A framework for integrating multiple intelligent applications in a given domain must
facilitate sharing of knowledge resources, including symbolic models of domain structures. behavior, and
operational expertise. Other resources of common utility across applications include interfaces to: users:
databases; target system data feeds and command/control effecters; and conventional software for data
analysis, performance monitoring, and (low-level) automated process control and safing systems.

Third, the integration strategy must be non-intrusive. Existing “standalone” knowledge-based and
conventional programs and data resources represent significant investments in capital equipment, software
development, and safety (i.e., from prior validation and verification). It would be prohibitively expensive to
discard such resources or to re-engineer them extensively.

Fourth, applications and resources are generally distributed across Leterogeneous software and hardware
platforms connected by one or more (local area) networks. A generalized communications capability is needed
for data exchange and control access across intelligent applications. Moreover. this functional capability
should be accessible through a modular, high-level interface: minimizing the visibility of the mechanics
of distributed communication fosters maintainability of application code and accessibility for developers
unversed in exotic communication protocols.

The final and perhaps most critical problem is establishing cooperation between knowledge-based ap-
plications once they are integrated into a unified framework. Coordination presupposes that applications
somehow know about one another, their respective capabilities, activities, intentions, and needs. In addition,
coordination also presupposes control and communications models for exchanging requests, commands, sug-
gestions, beliefs, and other information. Again, to facilitate maintainability and extensibility, it is important
that application models and interprocess control mechanisms be partitioned from one another and from
distributed communication functionality.

Related Work

Distributed Artificial Intelligence (DAI) deals with the solution of complex problems by networks of
autonomous, cooperating computational processes [Hu87]. These processes, often called agents, can be dis-
tributed physically across computational resources and logically across an organizational structure. Typically,
cooperation is mediated by message-passing communication between agents.

DAl research to date, has focused almost exclusively on domains in which single organizations of agents
cooperate to solve single complex tasks [Bo88], including data fusion [Le83] and speech understanding [Bs87].
These “single problem” DAI research efforts have concentrated on developing complex locel control structures
for coordinating a network of homogeneous agents to converge to globally consistent problem solutions. For
example, intelligent schedulers prioritize local agent tasks for execution according to heuristics or metrics

232

that gauge probable global problem-solving effectiveness [Le83]. More complex planners create, order, and
filter agent tasks adaptively, based on hierarchies of local and global problem-solving goals [Ha80].

Single problem DAI architectures, while suggestive, are not directly applicable to the integration prob-
lems described above. DAI research has generally assumed: a single logical organization of homogeneous
complex agents, such as distributed blackboards; correspondingly uniform models for intra— and inter-agent
communication and control; and homogeneous software and hardware platforms [Hu87,Bo88.Ja89]. All three
assumptions are violated in the complex DAI environments of interest here.

Recently, DAI research has broadened to consider domains such as operations support and battle man-
agement, which encompass collections of related problems of varying complexity. While requisite problem-
solving skills, knowledge and data resources may overlap considerably, the solutions to problems in these
domains may be independent or only weakly dependent upon one another. These characteristics favor
coarser-grained, more loosely—coupled DAI architectures, comprised of individual agents and organizations
of agents that focus on particular problems or problem sets disjoint from one another. A useful human
analogy is a legal or medical practice of consultants with different areas of specialized expertise.

Fine-grained scheduling and planning of inter-organization activities tend not to be critical issues in
these domains hecause agent organizations only depend weakly on one another. Instead, the critical design
issues are: (a) to integrate agents and agent organizations bounded by different knowledge representation,
reasoning, control, and communication models; and (b) to access and integrate existing conventional software
and data resources.

Initial “multiple problem” DAI applications have failed to address all of the issues raised in the last
section in a generalizable manner. For example, KB-BATMAN integrates three intelligent decision aids
for a military tactical command. However, the subsystems only communicate indirectly, through pairwise
interactions with a shared relational data base and in a fixed, predefined control pattern [Nu8s].

OPERA assists in operations support for NASA’s Space Shuttle Launch Processing System [He87 Ad89b)].
Its hierarchical blackboard architecture successfully integrates and coordinates heterogeneous expert sys-
tems, which share external interfaces and knowledge bases [Ad89c]. However, OPERA applications are all
co-resident (i.e., physically non-distributed). Knowledge bases are restricted to a common representational
model. OPERA also lacks generalized tools for handling errors and accessing data feeds or databases.

Several DAI development tools support integration of intelligent applications with heterogeneous or-
ganizational models. ABE and AGORA provide predefined models for inter-organizational control {eg.,
dataflow, blackboard, transaction-based) [Bs87,Ha88]. ABE also supplies a high-level graphic editor and
an interface to a commercial relational database management system. AGORA uses a shared-memory com-
munication model, while ABE uses message-passing. Both tools employ virtual machine models that map
onto particular platforms and network communication services (e.g., MACH, Chaosnet). MACE [Ga86], a
message-based DAI testbed incorporates an elegant declarative language for modeling agents’ roles, skills,
goals, and acquaintances. However, MACE offers limited tools for coordinating multiple agent organizations
and lacks support for heterogeneous processing platforms.

Architecture of the SOCIAL DAI Development Framework

SOCIAL is a generalized framework for developing both single and multiple problem DAT applications.
Its architecture, shown in Figure 1, consists of a layered, partitioned set of system building blocks and

development interfaces.

Developers use the high-level Application Interface to access predefined object classes, called Types.
Each Type represents a different, generic DAI control skeleton for intelligent agents or agent organizations.
Organization Types are skeletons for agents whose logical functions are to coordinate a collection of agents
(i.e., organizational members), and to manage their communications with outside agents and organizations.

DAI systems are constructed by instantiating (or specializing and instantiating) suitable agent Types and
embedding application elements within those “wrapper” objects. Application elements access the distributed
services of its embedding Type instance through discrete high-level message-based Protocols. A given DAL
system can integrate multiple heterogeneous agents and agent organization Types.

Agent Types are structured as an inheritance hierarchy of object classes, whose initial subclasses are

233

shown in Figure 2. Discrete application elements (e.g., knowledge sources), are embedded in basic Re-
ceptionist agent skeletons. Specialized subclasses of the Receptionist, called Gateways, are instantiated for
embedding protected knowledge or data bases. The Manager Type is the root Agent Organization class.
Manager subclasses include variant blackboard architectures and other organizational models such as have
been developed in single problem DAI research. These Types are described further in the MetaAgents section
of this paper.

MetaAgents MetaViews

MetaCourier
I Network, Processor, and Operating System Platforms —I

Figure .1: SOCIAL Architecture

MetaCourier Agent

/\

Receptionist Manager

Database Knowledge Base Distributed Hierarchical
Gateway Gateway Blackboard Distributed
Blackboard

Figure 2: Agent Types in SOCIAL's Application Library

Each Type is comprised of other kinds of objects called Models, which define different aspects of dis-
tributed behavior. Models are accessed through a separate Agent Development Interface. At present,
SOCIAL describes three types of Models, which are represented in terms of compilable object—oriented lan-
guages. The MetaCourier language, SOCIAL's basic substrate, defines a class of Models for distributed
communications. MetaAgents defines a class of intra- and inter-process control Models for agent and agent
organizations. The MetaViews language defines a class of Models for accessing different models of data and
knowledge. Both languages exploit MetaCourier’s distributed communication services.

In effect, developers use the Application Interface to access a library of predefined DAI building blocks.
Most of these objects can be customized by setting mode switches that override default services such as
error-handling behavior. Applications may sometimes require service options or new behaviors not provided
by the library of existing agent Types. In these situations, the dedicated languages comprising the Agent
Development Interface can be used to extend the library by defining specialized Models and combining them
to create new agent Type subclasses.

Operations Support using SOCIAL

A hypothetical example of a DAI operations support system based on SOCIAL is illustrated in Figure
3. The target domain is a distributed ground control network such as a launch processing system, consisting
of user consoles, computers, data links, ground support equipment, and embedded sensors. Sensor monitor
prograins would be realized as Receptionist agents, with asynchronous or synchronous communication Mod-
els, depending on individual polling requirements. A relational database for tracking problems would be
mtegrated using a Gateway agent. A Blackboard-based data fusion Manager Agent would coordinate sensor
polling, measurement interpretation, and anomaly detection. A diagnoser agent would generate and test

234

fault hypotheses and issue recovery suggestions to an Executive Manager Agent. Operations users would
view ongoing activities and issue queries or commands to the Executive and database Gateway agents.

|User Interface Agent | -

(Error-Tracklng DB)

E tive A t
Fecu ive Agen J\ ’ /

Data Fusion Agent

— { | '\

Monitor Monitor Monitor Monitor
Agent 3 Agent 1b | | Agent 1a Agent 2a
‘ Sensor-1a 1
(DataFeed) Sensor-1b (Sensor-2a
(Network Op. Sys.) Subsystem 1 { Subsystem 2

Figure .3: Hypothetical DAI System for Operation Support based on SOCIAL

The remaining sections describe SOCIAL’s underlying languages and Models, which enable Agent Types
to provide distributed services for integrating and coordinating DAI application elements.

MetaCourier: A Langunage for Distributed Communication

Advanced operational support architectures for space and ground control systems will have to integrate
cmerging hardware and software technologies with existing applications (both conventional and intelligent),
interfaces, languages, and hardware platforms. Cost and reliability concerns dictate an integration strategy
that minimizes intrusive modifications to existing system elements and allows them to be maintained and
enhanced independently. Moreover, this strategy should maximize portability, to enable migration of system
components to newer, high performance processor platforms. Technology transfer and management risks are
also minimized, by reducing adjustments to training and operational procedures, and standdowns for system
replacement and validation.

MetaCourier is a high-level object-oriented language for distributed communication that is designed to
achieve these system integration objectives [Pa88]. The leading alternative communication model, based on
the Remote Procedure Call (RPC) facility, is asymmetric and pairwise—restricted: an active client process
invokes one (and only one) passive server process, which responds as required. In contrast, MetaCourier
services provide fully peer to peer transparent cominunication between distributed applications.

‘The MetaCourier language defines four major object classes, Agents, Environments, Hosts, and Mes-
sages. Agents are intelligent, self-contained, autonomous processes. Host object attributes characterize the
structure of network nodes: their processors, operating systems, peripherals, network types and physical
addresses. Environments depict software dependencies for Agents, such as language compilers, and editors.
Environments can be specialized to enhance communication performance for particular data types (e.g.,
sparse arrays), by defining custom encoding and decoding methods.

A MetaCourier Message defines the specific distributed communication behavior used by an Agent
when it executes in an Environment. Both asynchronous and synchronous message-passing Models are
available. An application Agent communicates with another by formulating a Message using the relevant
Model protocol, for example:

hsynchronous: (Tell :agent sensor-monitor :sys Symbl ''(pell measurement-Z)"
Synchronous: (Tell-and-Block :agent user-interface :sys Hac2
"(trigger—-alarm sensor-1 window-2)'"")

235

MetaCourier handles message routing, transmission, and delivery services transparently to the source
and target agents’ associated applications. Conceptually, the Agents’ associated Hosts and Environments
act as filters that manage processing and network dependencies in the communication process {cf Figure
4). Distributed control is achieved in a DAI application when Agents autonomously invoke other Agents.
Concurrency is realized when multiple Agents are invoked simultaneously (across multiple Hosts).

Environment Host Host Environment
Messages
Agent ? Agent
R Y

Figure .4: Operational Model of MetaCourier Cornmunication Process

The openness of MetaCourier’s communications architecture distinguishes SOCIAL from other DAI
development frameworks, such as ABE, AGORA, MACE, ERASMUS [Ja88], and AF [Gr87).

Status: MetaCourier can be used as a standalone development language. It is currently available for:
ANSE C and Common LISP programming languages; MS-DOS, UNIX, VMS, Macintosh Multifinder, and
Lisp Machine operating systems; PCs, Macintoshes, Lisp Machines, VAX, Sun, and HP workstations. It
currently utilizes TCP/IP on Ethernet and Appletalk protocols, but is extensible to other OSI-compatible
network protocol suites.

MetaAgents: A Language for Agent Control and Coordination

The MetaCourier language offers a high-level interface that conceals the complexity of Imterprocess
communication in distributed heterogeneous computing environments. Additional development capabili-
ties are needed for internal process control, peer to peer inter-process coordination, and other distributed
control services. MetaAgents is an object—oriented language for defining control Models to address these
requirements. '

The basic kernel MetaAgents Model protocols provide the equivalent of a traditional operating system’s
executive process control operations: agent creation, duplication, migration, and deletion. These protocols
provide development-level options for specifying how to control Type inheritance behavior across distributed
environments. The creation and copy protocols are critical because they allow new Agents to be defined
dynamically at runtime.

MetaAgents Models support high-level message and concurrency management services. MetaCourier
makes minimal assumptions about the ordering behavior of the low-level network protocols for message
delivery, providing protocols to enforce simple message ordering schemes such as First In First Out (FIFO)
delivery at particular nodes. MetaAgents Models define polices that use such guaranteed orderings to satisfy
synchronization requirements of particular DAI applications [Pe89].

For example, MetaAgents supports an “atomic” broadcast protocol, which guarantees a globally in-
variant ordering of message delivery across all networks nodes. Atomic broadcast requires multiple phases
of message exchanges; it should therefore only be used selectively, in situations where partial orderings of
many -to-many agent interactions are insufficient and where lower performance can be tolerated. Atomic
broadcasts are useful for maintaining consistency in transaction-oriented applications, such as where multiple
agents send nessages that operate on distributed replicated data.

MetaAgents defines other complex communication Models [Bi89] using a Group-based conversation
abstraction: protocols are defined for agents to join a Group, to converse with other Group members via
directed messages or broadcasts, and to depart the Group and the conversation. For example, a reliable
Group broadcast protocol propagates information from one agent to other Group members such that all
operational agents receive this information despite failures in the system.

236

Groups and broadcasts are very useful for replicating data for concurrency and fault management.
Bottlenecks caused by centralized control can be alleviated by distributing task elements among agents that
operate concurrently on replicated data and control state information. Similarly, data replicated along time-
critical control paths can help to compensate for communication delay latencies in distributed networks (due
to packet loss and node lode variances) that lead to violations of real-time processing constraints. Replicated
data can also be used to maintain redundant copies of critical state information to facilitate recovery control
strategies for fault tolerant behavior in distributed systems. Group protocols also ensure orderly reintegration
of agents into DAI applications when dropped network links are recovered.

The following sections describe basic SOCIAL agent Types to illustrate the roles of MetaAgents Models.
Receptionists and Gateways

‘The Receptionist is the root or kernel MetaAgents Type for single agents. It specifies basic commu-
nication services through MetaCourier or more complex MetaAgents protocols and Group protocols. A
Receptionist agent is responsible for serializing concurrent requests, for scheduling access to its embedded
application, and for detecting and recovering from possible error states that the application might enter. Re-
ceptionists manage the control transactions that implement fault tolerant behavior; agents departing from a
Group due to failures of nodes or network links and agents rejoining a task processing conversation following
network recovery. Receptionists can also be designed to manage security functions, for restricting access to
specific application elements.

Databases and application programs are often constructed using commercial development tools such
as DBMSs and Al shells. SOCIAL simplifies the design of Receptionists in such cases by abstracting the
application-independent aspects of tools’ control and data interfaces into specialized, predefined Reception-
ist subTypes called Gateways. Gateway agents supply predefined interface protocols for formulating queries
or commands, concealing variations of syntax across comparable tools. Accessing a resource or progran
through a Gateway reduces to defining the application—specific aspects of the interface, in particular, for-
mulating queries or commands whose arguments reference particular objects or attributes. Gateways for Al
development shells must provide bidirectional interfaces for control as well as for data, so that intelligent
applications can initiate queries or commands to other agents in the context of their own environments.

Manager

The distributed services provided by Receptionists enable application agents to interact through a
“loosely-coupled” model of cooperation. More sophisticated control is often needed to coordinate a set of
agents working together on one or several closely related tasks. The MetaAgents Manager and associated
sub’Types provide the requisite organizational control functionality.

A Manager regulates all communication between the agents within an organization via directed aud
broadcast protocols, providing a shared memory and a locus for centralized oversight and control. The
Manager agent also mediates communication between external agents and organizational members, such
as requests for data or services. To accomplish these various routing functions, the Manager maintains a
“database” describing member agents and their relationships. Managers can be replicated to avoid processing
bottlenecks and single point failures, although this entails additional control and performance overhead.

Specialized Manager subTypes will realize specific tightly-coupled distributed control frameworks, such
as blackboard architectures [Ni86,Ja89). The Manager Type does not restrict membership based on agent
Type. This means that organizations can be arbitrarily complex. In particular, SOCIAL supports hierarchi-
cal organizations, in which a Manager coordinates other Managers. Thus, SOCIAL'’s library of organization
Types can incorporate or subsume popular single problem DAl architectures, as well as hierarchical (multiple
problem) frameworks such as OPERA. More important, SOCIAL permits different elements of a complex
DAI system to be implemented using different agent and agent organization Types. MetaCourier provides
the substrate or “backplane” of distributed communication services that enables high-level integration and
coordination. Developers can exploit SOCIAL’s support of heterogeneity to implement application elements
using the most appropriate strategies for control and cooperation.

Status: The MetaAgents language design specification has been finished. Kernel process control protocols
have been implemented. Initial control Models, Gateways, and agent organization Types will be completed

by mid-1990.
237

MetaViews: A Language for Accessing Heterogeneous Data Resources

SOCIAL’s Gateway agent Type facilitates non-intrusive integration of databases and knowledge-based
systems implemented using standard, commercial DBMSs and Al shells. Gateway interfaces and services for
distributed communication and process control derive from MetaCourier and MetaAgents Models. Additional
services are required for formulating and processing queries and commands. MetaViews will address this
problem through interface Models that are specific to particular DBMS or Al shells. These Models will be
comprised of two elements: high-level interface protocols and services for translating between the protocols
and the tool language in question. The protocols represent SOCIAL’s equivalent to a programining interface
library.

Figure & depicts the functions performed by a MetaViews interface Model. The block on the left
represents an application agent A embedded in a Receptionist; the right -hand box represents a database or
knowledge-based system B embedded in a suitable Gateway. A issues commands for controlling or accessing
B in terms of the functional protocols. A’s Receptionist translator services convert those commands into an
efficient canonical data represention, which are dispatched via MetaCourier. B’s Gateway translator services
converts canonical commands into the tool-specific language using the (invertible) protocol library. A's
Receptionist and B's Gateway use MetaAgents services to manage concurrent messages.

Receptionist Agent A Gateway Agent B
Application DB or KBS
MetaViews Interface MetaViews Interface
Protocol Library Protocol Library
MetaViews MetaViews
Translation Services Translation Services
MetaAgent MetaAgent
Control Services Control Services
MetaCourler MetaCourier
CommunicationServices CommunicationServices
l —_— |

Commands and data in
Canonical Representation

Figure .5: Operational Model of MetaCourier Communication Process

MetaViews technology is extensible to integrate other kinds of information system tools, such spread-
sheets, computer-aided design tools, data analysis libraries, and data acquisition software.

Status: The MetaViews language design specification has been completed. Initial versions of MetaViews
Receptionist and Gateway Models for ANSI (" and Common Lisp for Oracle and Sybase relational databases.
KEE and CLIPS Al shells will be complete by mid-1990.

Conclusions

Operations support of complex systems exemplifies “multiple problemy” Distributed Artificial Intelligence
(DAI) domains. These domains are distinguished by their heterogeneity. Domain problems vary in difficulty
and degrees of interdependence. Application software and data resources can differ substantially with respect
to structure, complexity, intelligence, and interfaces. Software and hardware platforms are also typically
heterogeneous. The central design concerns in such domains are: (a) to integrate these diverse elements
non-intrusively; and (b) to supply flexible coordination models to allow intelligent applications to interact
cooperatively as a coherent, unified system.

SOCIAL is a generalized tool for developing DAI systems. It simplifies design and maintenance by
enforcing a clear separation between application-specific functionality and distributed services. Application
elements access services through high-level interfaces to predefined agent and agent organization Types. SO-
CIAL's interfaces reduce complexity by concealing the mechanics of distributed communication and control

238

across heterogeneous computing environments. “Standalone” applications, both intelligent and conventional,
and data resources can thus be integrated non-intrusively. Moreover, SOCIAL allows intelligent applications
based on different internal control schemes to be integrated within a single complex DAI system.

SOCIAL partitions distributed services into distinct object-oriented Models for: distributed communi-
cation (the substrate for all higher-level services); control services for managing processes and concurrency,
and for coordinating agents on particular “single problem” DAI applications; and data translation. The
SOCIAL architecture is open and extensible, with separate development interfaces to the library of generic
agent Types and to the language-based Models that comprise them. These high—level tools free developers
to concentrate on essential DA architectural issues, such as designing strategies for coordinating intelligent
subsystens.

Acknowledgments

‘The development of MetaCourier has been sponsored by the Department of Defense, U.S. Army Signal
Warfare Center, under Contract No. DAAB10-87-C-0053. The development of SOCTAL has been sponsored
by NASA under contract No. NAS10-11606.

References

[Adsga] R. Adler, B. H. Cottman. ™ A Developiment Framework for Distributed Artificial Intelligence”
Proceedings Fifth Conference on Al Applications, Computer Society of the IEEE, Miams, FL, March
6-16, 1989

[Ad8Yb] R. Adler, A. Heard, and R. B. Hosken. * OPERA - An Expert Operations Analyst for A Distributed
Computer Network.” Proceedings Annual Al Systems sn Government Conference, Computer Soctety
of the IEEE, Washington, D.C., March 27-31, 1983.

[Ad89c]) R. Adler. “A Distributed Blackboard Arhictecture for Integrating Loosely-Coupled Knowledge-
Based Systems.” Intelligent Systems Review. Association for Intelligent Systems Technology, E.
Syracuse, NY, 1989.

[Ba88] S. E. Bayer, R. A. Harris, L. W Morgan, J. F Spitzer. A Review of Space Station Freedom Program
Capabilities for the Development and Application of Advanced Automation. The MITRE Corp.
Technical Report MTR-88D00059, McLean, VA, December, 1989.

[Bigg] K. Birman et. al. The [5]S System Manual V1.2. Department of Computer Science, Cornell Uni-
versity, Ithaca, NY. June 1989.

(Bos8] A.Il. Bond and L. Gasser, eds. Readings in Distributed Artsficial Intelligence. Morgan-Kaufmann,
San Mateo, CA, 1988.

[Br89] M. R. Barry. “PX1: A Space Shuttle Mission Operations Knowledge-Based System Project.” Pro-
ceedings Annual Al Systems in Government Conference, Compuler Society of the IEEE, Washing-
ton, D.C., March 27-31, 1983.

[Bs87] R. Bisiani, F. Alleva, F. Correrini, A. Forin, F. Lecouat, and R. Lerner Heterogeneous Parallel
Processing: The Agora Shaved Memory. Carnegie-Mellon University, Computer Science Department.
CMU-CS-87-112. March 1987,

[Er80] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy “The Hearsay-11 Speech Understanding
System: Integrating Knowledge to Resolve Uncertainty.” ACM Computing Survey, 12, pp. 213-253,
1880.

((:a86] L. Gasser, C. Braganza, and N. Herman. MACE: 4 Flezible Testbed for Distributed Al Research.
Distributed Artificial Intelligence Group, Computer Sci. Dept. USC, 9-Aug-1986.

[Gr87) P.E Green. “AF: A Framework for Real-TIme Distributed Cooperative Problem Solving.” in [Hu87].

(Ha86] B. Hayes-Roth. “A Blackboard Architecture for Control.” Artificial Intelligence, Vol 262, pp.251-
321, Mar, 1586.

[Ha88) F. Hayes-Roth, L. D. Erman, S. Fouse, J. S. Lark J. Davidson. “ABE: A Cooperative Operating
System and Development Environment.” in [Bo88], pp. 457-489.

239

[Heg7]
[Hug7]
[3a88]
[Ja89)
(Le83)]

[Mu89]

[Nig6)]

[Nu88g)

[Pag8]
[Pe89)

[Ru8s)

A.E. Heard. “The Launch Processing System with a Future Look to OPERA.” Acta Astronautica,
TAF-87-215.

M. N. Huhns, editor. Distributed Artificial Intelligence. Morgan-Kaufmann, Los Altos, California,
1987.

V. Jagannathan, R.T. Dodhiawala, and L.S. Baum “ Boeing Blackboard System: The Erasmus
Version.” International Journal of Intelligent Systems, Vol 3 Number 3, Fall 1988, pp. 281-244.

V. Jagannathan, R.T. Dodhiawala, and L.S. Baum, eds. Blackboard Arkictectures and Applications.
Academic Press, San Diego, CA, 1989.

V. R. Lesser and D. D. Corkill. “The Distributed Vehicle Monitoring Testbed: A Tool for Investi-
gating Distributed Problem Solving Networks.” A Magazine, Fall 1983 pp. 15-33.

J. F. Muratore, T. A. Heindel, T. B. Murphy, A. N. Rasmussen, R. Z. McFarland. “Applications
of Artificial Intelligence to Space Shuttle Mission Control.” Proceedings Conference on Innovative
Applications of Al, Stanford, CA, March, 198$, pp 15-22.

H.P. Nii “Blackboard Systems: The Blackboard Model of Problem-Solving and the Evolution of
Blackboard Architectures.” Al Magazine, pp. 38-53, Summer 1$86.

R.O. Nugent and R. W. Tucker. “An Architecture for Integrating Distributed and Cooperating
Knowledge-Based Air Force Decision Aids.” Second Annual Space Operations Automation and
Robotics Workshop (SOAR 88), Dayton, Oh, July 1988.

R. C. Paslay. metaCourser: A Language For Distributed Heterogeneous Communicalion. Symbiotics
Inc. Cambridge, MA March 1988.

L.L. Peterson, N.C. Bucholz, and R.D. Schlichting. “ Preserving and Using Context Information In
Interprocess Communication.” ACM Transactions on Computer Systems, 7,3, Augusi 1989.

K. S. Rubin, P. M. Jones, C. M. Mitchell, T. C. Goldstein. “A Smalltalk Implementation of an
Intelligent Operator’s Assistant.” Proceedings Object-Oriented Programming Systems, Languages,
and Applicatsions, September, 1988, pp 234-247.

240

